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The approximate construction of attainability sets of control systems with quadratic integral constraints on the controls is 
considered. It is assumed that a control system is non-linear with respect to the phase variable and linear with respect to the 
variable which describes the controlling action. The approximation of the attainability sets of a control system is accomplished 
in several stages. The latter class of controls generates a finite number of trajectories of the system. The trajectories of the system 
are then replaced by Euler broken lines. An estimate of the accuracy of the Hausdorff distance between the attainability set and 
the set which has been approximately constructed is obtained. Q 1999 Elsevier Science Ltd. All rights reserved. 

Control systems with integral constraints [l-S] and geometric constraints [6-121 on the control resources 
have been considered previously. 

1. Suppose a control system is given and its behaviour in the interval Z = [to, O] (to < 8 < a) is described 
by the equation 

i(t) = f(& x(t)) + B(r, x(t)) * u(t), x00 ) = x0 (1.1) 

where x E R” is the n-dimensional phase vector of the system, u is the T-dimensional control vector, 
f(t, x) is an n-dimensional vector function and B(t, x) is an (n x r)-dimensional matrix function. 

It is assumed that the realizations u(t), t E Z of the control u are limited by the constraints 

where 11 . 11 denotes a Euclidean norm and b 3 0 is the constraint on the control resources. It is also 
assumed that the following conditions are satisfied. 

A. The functions&x) and B(t, x) are continuous with respect to the totality of the variables t, x, and 
also for any bounded closed domain D C Z x R” Lipschits constants Li = Li(D) E (0, co) (i = 1,2) exist 
such that 

for any (t, n*), (t, x.) from D. 
B. Constants yi E (0, m) (i = 1,2) exist such that 

for any (t, x) E Z x R”. 
Here, I Il? I I is the Euclidean norm of matrix B. By a permissible control, u( e ) = {u(t), t E I}, we 

mean any quadratically integrable function u( - ) (u( - ) E L2[ro, e]) which satisfies inequality (1.2). The 
class of all permissible controls u( - ) is denoted by U. 

By the solution of Eq. (l.l), which corresponds to a control u( . ) E U, we mean the absolutely 
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continuous vector function ofx(t), t e I which satisfies this equation almost everywhere in the interval 
L 

We shall call the solution of Eq. (1.1), which corresponds to a control u( .  ) e U, the motion of system 
(1.1) which is generated by the control u( • ). The set of all motions of system (1.1) corresponding to 
all possible u ( .  ) e U is denoted by X(to, Xo). We assume that 

X(r, to, Xo) = Ix(t) e R": x(.) ¢ X(to, Xo)} 

z(t0, x0) = {(t, x(t)) e n x R, : x(-) e X(to, xo)} 

where X(t; to, Xo) is called the attainability set of control system (1.1) with constraints (1.2) corresponding 
to an instant of  time t and the set Z(to, Xo) is called the integral funnel of system (1.1). It is obvious that 
the following equality is satisfied 

Z(to, x0) = {(t, X(t; to, Xo)) : t e 11 

where we put (t, X) = {(t, x) : x ~ X}. 
For the following arguments, we find the domain D C I x R n in which the integral funnel Z(to, Xo) is 

contained. For simplicity, we choose this domain to be cylindrical and put 

O = I(t,  x )  ~ / x R n, Ilxll ~< r} ,  r = h(0) (1  + c y l ( 0  - to)) 

h(t) = Ilxoll + Yl(t-  to) + Y~tto t ,~f~--  to, c = exp[¥1(0- to)] 

Assertion 1. The inclusion Z(to, Xo) C D holds and the set D is defined by relation (1.3). 

(1.3) 

Proof. Suppose x(. ) is an arbitrary motion of system (1.1), which is generated by a certain control u( • ) e U. 
The representation 

t 
x ( t )  = X 0 + I (f( 'LX(X)) + B( 'Lx( '~)) 'u( ' t ) )dg,  t ¢ I 

to 

holds. 
By virtue of condition B, we have 

t 
|x(t)[ ~ h(t) + j V(X).~(X)~d~t, ¥(t)  = Yl, t e 1 

The functions x(t), h(t), ~/(t), t ~ I in this inequality satisfy the conditions of Gronwall's lemma [13, p. 219]. Using 
this iemma and taking account of the fact that the function h(t) increases monotonically in L we have 

t 
Ix(t)[ ~ h(0)(l + c ! Yi a'x) ~ h(0)(l + c3'1 (0-  t 0)), t E I (1.4) 

tO 

Sincex( • ) is an arbitrary motion of system (1.1), we obtain that the assertion holds from (1.4). 

Everywhere in the following arguments, we shall have in mind the cylinder (1.3) as the set D. 

2. Suppose H e (0, oo). We now introduce into consideration the set Un of all controls u ( .  ) e U for 
which 

Ilu(t)ll ~ H, t ~ I (2.1) 

The set of allx e R n, at which the motions of system (1.1) which are generated by all possible controls 
u( .  ) ~ UH arrive at the instant of time 0, is denoted by the symbolXn(0; to,Xo). We will find the upper 
limit of the Hausdorff  distance between the set X(0; to, x0) and Xn(0; to, x0). We put 

c .  = L t ( 0 -  t o)  + / , 2 ( 0  - to)tt2~to, c o = 1 + c .  e x p [ c . ]  (2.2) 

Assertion 2. The Hausdorff  distance ct(X(O; to, Xo), Xn(O; to, Xo)) ~ 0 when H --> ~ and, what is more, 
the following inequality holds 
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2 
a(X(t;to,Xo),XH(t;to,Xo)) <~ 2¥2 la°c o, t ¢ I (2.3) 

H 

Proof. Suppose the arbitrary controls u(. ) ¢ U and ~(. ) ~ Un are chosen. They generate the motionsx(t) and 
.~(t) of system (1.1) in I respectively which satisfy the inequality 

t0 tO 

t 
+1 Ie(x,i(x))(u(x)-r,(x)~x, te t 

to 

On taking account of condition A, we obtain from (2.4) 

(2.4) 

t 
£(t) ~ h(t)+ ! ¥ (~ ( '0d¢ ,  t ~ ! (2.5) 

tO 

¥( ' )  = L, +Ld',( ' ) l l  

t 

h(,)= I IB('~,z('o)l:k('o-~('~)l,~ 
tO 

We now make a certain correction with respect to the pair of controls u( .  ), ~(- ) and, in fact, we initially select 
a control u ( .  ) ¢ U, and, using this control, we form a control ~( .  ) ~ U,~ 

... fu(t), if ~u(t)~ H (2.6) 
uU) = ~u(t)~u(t)~_l H, if k(t)~ > H 

We assume that f~t = {x ¢ [t 0, t] : Ilu(~)ll 
I l u ( ~ )  - ~(~) II =0 when T ~ [to, t]~'~. 

The inequality 

> H}. Then, [to, t]\~t : Ilu(~)ll ~< H} and, according to (2.6), 

(, ,~112 

(2.7) 

holds. 
We also have the inequality 

H2p(flt) K / I lu(z) l l2d~ ~ Ilu(x)ll2a~+ ~ Ilu(z)ll2dc~po 2 
Ot fit [to,t]~t 

from which it follows that p(f~) ~< I~/H 2. Here, p(D~) is the Lebesgue measure of the set ~")t" The inequality 

h(t)~ (y~l,t(flt))l/2[( I Ilu(x) 112 d't) I/2 +( I Ilu(x) 112 d¢)112)] ~ 
Qt Qt 

'y2p(~t)l/22(p02) ]/2 ~2Y2P 2/H, t¢ ! 

then follow from this and from (2.7). 
On taking account of the inequality 

to to tO 

Ll(O-to)+ l~(O-to)ll2~O, t • l 

(2.8) 
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we obtain from inequality (2.5), using Gronwall's lemma 

e.(t) ~ (1 + c, exp[c,l).2Y2 p02 ~ 1102 H 2y 2-~-c 0, t • 1 (2.9) 

The constants c. > 0, Co > 0 are defined by relations (2.2). 
Thus, it has been shown that, for any control u(. ) ~ Uwhich generates a motionx( • ) of system (1.1), a control 

u(- ) ~ UH is found which generates the motion.,~(. ) which satisfies inequality (2.9). Since UH C U, the fact that 
the assertion holds from this and from (2.9). 

3. Now, taking estimate (2.3) into consideration, we can reduce the problem of the approximate 
calculation of the attainability set X(t; to, Xo) to the problem of the approximate calculation of the 
attainability set Xn(t; to, Xo), t • L The class UH represents the set of controls which are limited by the 
composite constraints (1.2) and (2.1). 

Bearing in mind the approximate calculation of the attainability setX~t;  t0,x0), we now try to narrow 
down the class of controls UH. This is accomplished in three stages: we initially narrow down the class 
UH to a certain class UH of piecewise-constant controls, we then narrow down the class UH to the class 
U/-t of piecewise-constant controls u( .  ), the norms II u(t) I Ivof the values u(t) of which lie in a defined 
uniform mesh and, finally, we narrow down the class UH tO the final class of controls /3H for 
which not only the norms of the values of the controls but these values themselves in a local sense are 
uniformly arranged in a certain mesh. Note that each subsequent class of controls is more convenient 
in a certain sense for calculating the attainability sets which they generate. For instance, the final class 
0H is the most convenient for calculating the attainability sets. It generates a finite number of motions 
of system (1.1). 

Each time, on passing from one class of controls to the following narrower class of controls, we shall 
show, using Gronwall's lemma, that this following class of controls approximates the preceding class 
of controls quite well, that is, the attainability sets corresponding to these classes are sufficiently close 
to one another. 

We now introduce into the treatment a subdivision F = {to, tl . . . . .  tN = 0} of the interval I = [to, 0] 
such that henceforth 

t i + l - t i = ( O - t o ) / N = A ;  i = 0 , 1  ..... N -  1 

We will now consider the class UH of all possible piecewise-constant controls ~ ( . )  • UH, the intervals 
of constancy of which are the half intervals Ii = [ti, t i + l )  of the subdivision of F. We will denote the 

^ 

attainability set of system (1.1) which is generated by this class UH and which corresponds to an instant 
of time t • I by Xn(t; to, Xo) and assume that 

I , - s  xl l  K 
(:,x)tD 

9(A)  = (1 + K)Z~ + y2po ~ 2  

o)" (A) = m ~  IB(t°,x*)- B(t.,x,)~ 
It* - l ,  I*~A,IIx - x *  H~A" " 

(3.1) 

(3.2) 

(3.3) 

x(A) = 2to*(~A))(0 - t0)l/2g0 +2y2~t0 AI/2 

( t* ,x*)eD,  ( t , , x , )¢D,  A>~0 
(3.4) 

Assertion 3. The following inequality holds 

a(Xtt(t;to,Xo) , ~ftt(t;to,Xo))~ co~A), t ~ ! (3.5) 

The constant Co > 0 is defined by relation (2.2). 

Proof. Suppose u(. ) is an arbitrary control from UH. We set the control ~(- ), which is specified by the equality 
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| t/4-1 
~(t) = ~ J u(g)dx, t ~ [i (3.6) 

in correspondence to it. 
It is obvious from the construction that 

tl 

II u ( f )  II ~ d ~  n = 1, 2 

On taking account of the inequaliff V/~ ~< A~/2~2/2, we obtain that A II fi(t) II 2 ~ V~2. By virtue of the constancy 
of the function u ( . )  in the interval Ii, the equality 

All~(Ol12="~ a II~(~)II 2 d~, t e  li 
ti 

is satisfied whereupon we obtain the inequality 

0 0 
J II riO) II 2 d~ ~ ~ II u(~) II 2 ~ '~ IAO 2 
to tO 

This means that u ( - )  ¢ UH. 
Now, suppose x( • ) and x(  • ) are the motions of system (1.1) which are generated in I by the controls u( • ) 

and ~( • ), respectively. For these motions, the following equality is satisfied 

t t 
,, x( t )  - ~( t )  J~ I te f(~,x(~))- f(~,~(~)) n ~ + J tl (B(~,x(~)) - 

t o to 

t 
-B(x,.~('t)))u(x)lld'¢+ll ~ B(x,~(g))(u(g)-~(x))d~ll, t G I 

tO 

By virtue of condition A, from this we obtain 

t 
¢(t)~h(t) + I ¥(x)f.(x)dx, t ~ I 

to 

e(t) = Ix(t)- . i ( t~,  ¥(g)  = L 1 +L2~(X) [ (3.7) 

h(t) = [! B('c,x('f)).(u('¢)-~(x) 4 

We shall now obtain some estimates for the subsequent proof. The inequalities 

~,tl / 

follow from condition B and notation (3.1). 
By virtue of the notation of (3.2), from here we obtain 

[x-ti[~A), [.i(x)-.i(ti)l~9(A), x¢  li (3.8) 

Hence, in the notation of (3.3), it follows that 

]s(x,~(x))- B(tl.,~(ti))l~e*(9(A)), x Eii (3.9) 
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Having obtained the required relations, we now estimate the magnitude ofh(t) from equality (3.7). For t ~ lk, 
the following inequality is satisfied 

rJ ,,,i i, ,,4 h(t). Y('O + Y('¢ tel, Y(t)=B(t,~t)).(u(t))-~(t)) (3.10) 
IFo I IF* II 

By virtue of inequality (3.9), the estimate for the first integral 

r (~ , . I . ,  ~ I ;  r ( . ~ !  = r, I I (a(,.:. ~(~))- e(,,. ~(,,))x,,(~)- ~',)~,1'- 
, / i=°11~, / i=°l'~ / ( 3 .11 )  

k -  I t l+l 
Y.., J o~"(~A))(l~(x)l+~(x~a'x~m*(~a))'2(e-to)~l, to 
i=0 t i 

is true. 
For the second integral, we obtain 

b Y('D y:z(~u(x)l-N'c)l)dx~2y,~/~Jp o, t e i t (3.12) 
I t , I t ,  

Then, using relations (3.11) and (3.12), from inequality (3.10) we obtain the estimate 

h(t)~2e0*(ql(A)Xe-to)~Jpo +2Y21aoA~J, t E I 

On applying Gronwalrs lemma to inequality (3.7), we obtain 

I~(t) ~ (1 + c. exp[c. ])x(A) ~ c0x(A), (3.13) 

The co, pstants c. > 0, Co > 0 are defined by relation (2.2), and x(A) > 0 is defined by relation (3.4). 
Since UH C UH, the validity of the assertion follows from relation (3.13). 

4. We now introduce the subdivision F* = (Y0 = 0, Yl, • • • ,  YR =/-/2} of the interval [0, H 2] such 
that 

Yj+t - Y j  = H 2 1 R f A * ;  j = 0 , 1  ..... R - 1  
^ 

The class of  all possible controls u( .  ) ~ UH, for which the valuesy(t) -- I[u(t) I12, t ~ I are contained 
in the set F*, is denoted by UH. Hence, the condition I I u (t) I I = const, t ~ -/'i is satisfied for any control 
u("  ) ~ UH. What is more, I I u(t) I I 2 = Yyi, where yj~ is a certain value from F*. Here  and henceforth 
i = 0 , 1  . . . . .  N - 1 .  

The attainability set of system (1.1) which is generated by this class and which corresponds to the 
instant of t e I is denoted by X ~ t ;  to, Xo). 

Assertion 4. The following inequality holds 

Ot(f(tl(t;to,Xo), Xu(t;to,Xo))~CoY2 ~f-~'(O-to), t • I (4.1) 

The constant Co > 0 is defined by relation (2.2). 

Proof. Suppose t~(. ) is an arbitrary control from ~/H. Then, u(t) = t~i = const when t e ~i" 
We shall put 

v / ~ I I M  I - IA 
u(t) = ~ly~, Fill ~'i, t • i~ 

where Yji are the points of the subdivision F* such that II ~ II z ~ lyy,, Y~,÷O. It is obvious that 
II ~(t) II ~ =yy, <- II?~ II ~ -- II ~(t)ll ~ for all t ~ Te. Consequently 
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0 1  12 8 ,, . 

/ O  n n t o 

Hence we have proved that t~(. ) e tin. 
The following relation is satisfied 

II ,~(t) - ~ (t) ll---II '~i II- ~ ~ ~ - ~ ~ ~ t ¢ i i (4.2) 

^ Now, suppose ~c (t) and :~ (t), t e I are two motions of system (1.1) which are generated by the controls 
u (t), respectively. The equality 

v ¢ v ; 

J(t) - X(t) = ~ (I('c, ~('¢))- f('c, x('C)))d'c + ~ (B('c, J('C)) - 
t 0 t o  

v t v v 

-B(x, x(~)))~(~)d~ + 1B(~, x(~))(~(~)- u(~))at, t e ! 
to 

is true or, according to condition A 

1 

~(t)~h(t)+ J¥('Oe(x)dx, t e I (4.3) 
t0 

e(t) = (t - x(t ¥(~) = 1- 4 + L2|~( 'C) ~ 

h(t) = l B(~,x(x) • ~(x) - u(x 
fO n u n 

The estimate 

h(t)~¥2"J-ff (O-to), t e I 

is true for the function h(t) by virtue of condition B and inequality (4.2). 
Then, on applying Gronwall's lemma to inequality (4.3), we obtain 

e ( t ) ~ C o ¥ 2 ~ ( O - t o ) ,  t e ! 

The constant Co > 0 is define~l by relation (2.2). 
Since the inclusion UH C UH is true, the validity of the assertion follows from relation (4.4). 

(4.4) 

5. Suppose S = {u e Rr: I l u [ I = 1} is a unit sphere of the space R'. We define a &mesh of the sphere 
S for a certain specified 8 > 0 as ~ = (So, sl . . . . .  Sp}. 

We now introduce the class Un of all possible controls u( • ) e Un which are such that they satisfy 
the relation 

~(t) = y4~-,st,, t ~/ , ,  yj, ~ r ' ,  st, ~ z (5.1) 

in each interval Ii  of the subdivision F. 
The inequality 

N - I  
A Z yj,~gt~, yj, e[O,/-/21 (5.2) 

i=0  

is then true. 
_ The attainability set of system (1.1), which is determined by the class of controls UH, is denoted by 

Xn(t; to, Xo). 

Assertion 5. The  following inequality holds 
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v 

ot(Xlt(t;to,Xo), XH(t;tO,xO))~.Co~/2(O-to)HS, t ¢ I (5.3) 

The constant Co > 0 is defined by relation (2.2). 

Proof. By virtue of the definition of the ~5-mesh, the control u(. ) ~ U~, which satisfies the inequality 

~ ( t ) - ~ ( t ~ S  y~i, t¢  (5.4) 

is found for any control u ( . )  ~ On. 
Suppose .~(t) and ~(t) are the motions of system (1.1) which generate the controls u(t) and u(t) 

respectively. Then, the following inequality is satisfied 

v I V t v 

x(t)- J:(t) = ~(f('c,X('E)) - f(~,.~(~)))d~ + S(B('c,x('[))- 
to  tO 

v l v 

-B('t,Yc('t)))u('C)d'C + ~ B('t, J('t))(u('0- ~(~))d't, t e l 
to 

By virtue of condition A, we therefore obtain 

t 

e(t)~h(t)+ Jqt('~)~(x)dx, t ¢ / 

'o (5.5) 

I v ' 4 t  i, ~(t) = x( t ) -  Yc(t ¥(t) = L I + u('t , h(t) = B(x,Yc('t) • (x)-~(x 
to 

By virtue of condition B and inequality (5.4), the estimate 

'" F h ( t ) ~ .  I IB(~,~(~)~I • (~)-~(~ 2A ~Y2(0- t0)  HS, tGli  
i = 0  t i "= 

holds for the function h(t). 
Then, on applying Gronwall's lemma to inequality (5.5), we obtain the estimate 

~(t)~Co?2(0- t0)H6, t E ! (5.6) 

The co nstantc0 > 0 is defined by relation (2.2). 
Since UH C UH, the validity of the assertion follows from relation (5.6). 

6. We will now discuss the problem of the approximate calculation of the attainability_ set :~(0; 
to, xo). All the argument and the estimates which will be obtained hold for the general case Xu(t; to, xo), 
t e l .  

"o c 
-0.2 0 0.2 x 

Fig. 1. 
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We shall make the Euler broken line 

Z(t) = Z(t i ) + (t - t i ) ( f ( t  i,z(ti )) + B(ti, z(ti ))u(ti )),  Z(to) = ~C(to) = Xo, t ¢ l i  (6.1) 

correspond to any motion x ( .  ) of  system (1.1) which is generated by a control u ( -  ) ~ Lru. 
The set of values of z(0) of the Euler broken lines z(- ) which are generated by all possible controls 

u ( .  ) e Uu is denoted by Z(0; to, x0). 
Note that the values of z(0) of the Euler broken lines (6.1) can be calculated using the recurrence 

formula 

Z(ti+l ) = Z(t i) + A [ f ( t  i, Z(ti)) + B(t i, z(t i))  Y~j Sl t ] 

Z(tO)ffixo, yj; ¢1'*, sti ¢ =  

We now introduce the notation 

(6.2) 

K * ( A )  = • m a x .  |f(t*,x*)-f(t.,x.~ p ,,.{.~, p - q . :  

~'(A) = K'(q,(A))+ H(O'(~A)), ~(A) = A~'(A) 

(6.3) 

(6.4) 

L=/ . i  +HL 2, ~ = (0 - t0 )exp[L(0 - to ) ]  

( t * , x ' ) e D ,  ( t , , x . ) e D ,  A;)0 

The functions (o*(A), q)(A) are defined by relations (3.2) and (3.3), respectively. 

(6.5) 

Asser t ion  6. The following inequality holds 

ot( XH(O;to,Xo),  Z(O;to,Xo))e;~'~* ( A)  (6.6) 

Proof. The inequality 

t tl 

~,'~ } I:~..~.))- :(,o.~Oo)~ + II(B(..~(.))- 8(,0.~(,o)))~(,o ~ 
t 0 tO 

holds for 81 ---- {I "~( t l )  - Z ( t l )  II. Hence, taking account of the fact that u(t0) = ~J(YJo) e F*, Sloe N and using arguments 
which are analogous to those used in obtaining inequalities (3.8) and (3.9), it ~ n  be shown that el ~ A{*(A). 

F o r  8 2 = I{ x ( t 2 )  - z ( t 2 )  II, the following estimate is true 

t2 

~:~P(, , ) -  ~(,,)1 + I l l ( ,  ~(,))- :(,,,:~(,, ) ~  + 
t i  

~2 r2 

+ I ](.(~.~.))-.(,,.~(,,))) ./~-, .,, ]~ + II:(,,.~(,,))-:(,,.~o,)~ + 
tl tI 

+!~(e(q,,~(t,))- B(t,.z(,,))) y~s~ sa ~.~(A) +e.(A) + ,~[(A) + a,/J~(A).~ 

~(A)exp[LA] + ~(A) 

Similarly, the estimate 

~3 ~(A)exp[L(A + A)] + ~(A))exp[LA] + ~(A) 

holds for 8 3 = II x(t3) - z(t3) II. 
Finally for 8N = I I ~(tN) - z(tN) I I = I I £(0)  - z(0) I I, we obtain 
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h ' - I  
eN~exp[L(O-to)] Y. ~(A) = ~*(A) (6.7) 

i--0 

Since the class of controls UH consists of piecewise-constant functions of the form (5.1), the validity of the assertion 
follows from relation (6.7). 

7. The validity of the following theorem follows from Assertions 2-6. 

Theorem. T h e  following estimate holds 

a(X(O;to,Xo), Z(O;to,Xo))~2coY2g ~ I H + CoX(A) + 

+Co¥2 (0 - to Y ~  + c0~2 (0 - t0)tt8 + ~ *  ( A ) 
(7.1) 

The constants Co > 0, ×(A) > 0, ~*(A) > 0 and ~ > 0 are defined by relations (2.2), (3.4), (6.4) and 
(6.5), respectively. 

Corollary. For any e > 0, which may be as small as desired, it is possible to choose the numbers 
H > 0, A > 0, A* > 0, 8 > 0 such that the following inequality is satisfied 

a(x(O;to,Xo), z(O;to;Xo))~e 

Note that, ff system (1.1) is autonomous, that is, it has the form 

:c(t) = f(x(t)) + B(x(t))u 

then co*(A) = L2A, K*(A) = LIA, ~*(A) = LA and the estimate (7.1) takes the form 

a(X(O;to'Xo)" Z(O;to,Xo)Yeg2Co¥2tt2/H+co[2L29(A)(O-to))~go + 2¥2goA~] + 

+COY2 (O - t o ) ~  + CoY2 (O - to )H8  - ~'/.,q~(A) 

The constants q~(A), L > 0 are defined by relations (3.2) and (6.5), respectively. 

Example. Suppose the behaviour of a control system is described by the differential equation 

1 
.f = "~ cos I00 I,~"I + 0, lu l, x(0) = 0 

(7.2) 

~ = lcosl00x + 0,1u2, y(0) = 0 
2 

where t ~ [0; 0.07] and the controlling action u = (ul, u2) ~ R 2 is limited by the integral constraint 

0.O7 2 0.07 1 
I ~/~(I')~ df~ I [Ul(l')2+/462(f)2]d~l.02--'~ 
0 0 

The attainability set of control system (7.2) at the instant of time 0 = 0.07 is shown in Fig. I. 
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